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Abstract

A theory of stochastic integral equations driven by predictable processes in

Stratonovich sense is developed. These driving processes include a large class of

discontinuous semimartingales. The theory of stochastic differential equations driven by

continuous semimartingales in Stratonovich sense is extended without involving

Lebesgue-Stieltjes integrals as done by Meyer. Moreover, a change of variables formula

without extra terms involving the jumps of the processes holds for this theory. Results on

approximation of driving processes are preserved.

Key words and phrases: stochastic equations, approximation of driving processes,
Stratonovich integration.
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5 1. Introduction

We propose an interpretation for the expression

N
(1) dX(t) = f(X(t)) du(t) + g(X(t)) dt + I o(X(t)) o dWv(t)

V- 1

where u(t) is a uniformly bounded, adapted, left continuous or, more generally, predictable

process, and (WI(t),.. ,WN(t)) is an N-dimensional Brownian motion process. Our goal is

to define what (1) means and to study the solutions of such equation. We extend here

the theory of stochastic differential equations driven by continuous semimartingales in

Stratonovich sense. In fact, if u(t) has Lipschitz paths with a uniform Lipschitz constant,

we interpret (1) in the usual Stratonovich sense. The basic difficulty with (1) is that if the

process u(t) is discontinuous at say t = T (a predictable stopping time) then X(t) may also

be discontinuous at t = T. Thus in general TC fX(s))dus),e;O, cannot be defined as

a pathwise Riemann-Stieltjes integral. One way to get around this difficulty is to interpret

this integral as a pathwise Lebesgue-Stieltjes integral. This approach is followed by Meyer

[9]. But then the change of variables formula is burdened with terms that account for

the jumps of X(t) (cf. Meyer [9], p. 301). These terms also complicate the equations that

follow from using such generalized Ito formula in deducing evolution equations for various

statistics of X(t). We interpret the first integral in (1) differently. This accounts for the

notation odu(t) which stands for an extension of Stratonovich integration. Our

interpretation of (1) preserves two important properties. First, the usual change of

variables formula holds for (1). That is, no extra terms due to the jumps of u(t) or X(t)

appear in the formula. And second, robustness in u(t) is built into this interpretation. This
4

is particularly important when u(t) is a control process. Simple cases of (1) are used to

model the controlled state in problems of singular control (cf. Benes et al. [1], Karatzas

and Shreve [7], Harrison [5], and Taksar [121). In some applications, the controls u(t) that
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appear naturally are continuous. This last property is nonrigorously dropped in order to find

optimal-in some sense-controls (cf. Harrison [5], §5). The definitions we will introduce are

oriented towards making rigorous that procedure. In fact, we will show that if u(t) is

approximated by Lipschitz processes u,(t) then the corresponding solutions X (t) converge to

X(t) as j -- -. The sense in which these limits are taken is given later.

We mention a few papers dealing with problems related to ours. Kushner [8]

contains an approximation theorem for jump-diffusion processes. The jump process is

Poisson and weak convergence of approximations is proved. In our work we allow u(t) to

be a predictable process. Moreover, we prove that the approximations X (t) converge

strongly. Picard [10] studies approximations for stochastic differential equations driven by

continuous martingales. Adapted and non adapted approximations of Brownian motion are

considered. Strong convergence is obtained. Protter [11] allows general semimartingales (i.e.

those with jumps) as differentials. Given decompositions of the semimartingales as the sum

of three terms, a continuous semimartingale, a purely discontinuous local martingale and a

process of bounded variation, the first two terms are approximated by smoother processes,

but the bounded variation processes are left fixed. Thus our results are in some sense

complementary to those of Protter [11]. Doleans-Dade [2] treats existence and uniqueness

for stochastic integral equations with differentials of possibly discontinuous semimartingales.

Lebesgue-Stieltjes integrals are used in [2] when differentials of bounded variation processes

appear. The relation between our approach and that of using Lebesgue-Stieltjes integrals is

further explored in Ferreyra [3]. To clarify ideas we begin with a simple example in 52.

Section 3 contains our hypotheses. Existence and iniqueness for (1) is treated in 54. The

chain rule is considered in S5.

S2. An Example.

It is enough to consider deterministic functions to illustrate the basic ideas.

11'11I
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Consider the problem

dX(t) =X(t) du(t), 0 4 t ( 2,

X(O) =1,

where u(t) =1(1,2) (t), 01t -<2, is the characteristic function of the interval (1.2) defined for

t1E [0,2]. If 1(t) = oX(s) du(s) is interpreted as a Lebesgue-Stieltjes integral, then I(t)=

X(1) 1(1,2)(t). Thus the above initial value problem is solved by

X(t) = 1 + I(t) = 1 + 1 (1,2)(t).

This solution is well defined for all te [0,2], and it jumps one unit at t = 1. The

following change of variables formula holds for X(t) and suitable T (cf. Meyer [9], p. 301).

= ~(X0)) f '(X(s)) dX(s) + {p(X(1+)) - v(X(l))

Next, consider the expression

dX(t) =X(t) .du(t),O t (2, X() =1I

Our approach for interpreting and solving this is as follows. Approximate u(t) by

Now, solve

dX)(t) = Xj~t) du,(t), Y)(0) = 1.

The solution X1-(t) equals 1 for t1, exp [D (t-1)] for 1-<t51 + 1/j, and e for 011 + I/j

Finally, define X(t) = lrn X -(t). Then X(t) equals 1 for tW, and e for t>1. It is easy to

check now that

dT(R(t)) = V (X(t)) .du(t), Vp (X (0)) =V(1

In fact, properties of the Riemann integral give

=VY() '(X)(t)) du,(t), 'pQC,(O)) f()

and of(Xt)) li vr '(X(t)).
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§3. Notation and hypotheses.

Let (t,F,P) be a complete probability space and let (Ft), 0<tT, be a right continuous

increasing family of sub a-fields of F each containing all P-null sets. Let (W1(t),...,WN(t)),

O<t<T, be an N-dimensional (Ft)-Brownian motion. We are concerned with the expression

N
(1) dX(t) = f(X(t)) du(t) + g(X(t)) dt + 1: cv(X(t)) .dWV(t)

V= I

The small circle . in the first term on the right hand side of (1) is introduced since that

term does not stand for a Lebesgue-Stieltjes type integral. In fact, this integration is an

extension of Stratonovich integration.

Let V be the set of real valued processes v(t), 0,t$T, that are adapted, uniformly

bounded (in t and w), and continuous on the left. Let U be the set of real valued

processes v(t), OtsT, that are uniformly bounded and predictable. (Predictable means that

(t,w)-u(t,.,) is measurable with respect to the a-field on [0,T] x fl generated by the

left-continuous, (Ft)-adapted processes). Assume, without loss of generality, that all

processes in V and U satisfy v(O) = 0. In section 4 we assume that uEV, while in section

5 we assume uEU. We assume throughout that u(t) = 0 for t < 0. The unknown

process X(t), 0:5tT, evolves in An . The initial data X(O) = X is an F0 -measurable,

An-valued random vector such that

(H) ElxlP<-, for some p>2.

Finally, the coefficients f, g and o., v = 1,.. .,N, are vector fields on A' such that
(H2) fe C3(An), f&C C2(Sp),

(H3) ge Cl(pn), and

(H4) ove C(), v = 1,...,N.

Here C'(An), i = 1, 2, is the subset of functions in d(An ) which are bounded together

with all their partial derivatives up to order i.

4 11li t1
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Definition 1: We say that a real-valued process v(t), O~t<T, belongs to Z if it is

(F,)-adapted, and it has Lipschitz paths with a uniform Lipschitz constant.

It is well known that under our hypotheses on the coefficients and assuming vEt

the equation

(2) dX(t) = fX(t)) - (t) + g(X(t))] dt + 1: ov(X(t)) ,dWv(t),

V= I

has a unique solution given that X(O) = X.

Next, we consider the approximation of the process u by processes in Z.

Lemma 1: (a) Let veV. Then there exist a uniformly bounded seauence (v,) of elements

of r such that for each O<t<T, vj(t)-v(t), a.e.

(b) Let ve U, and let 1 p'< -. Then there exists a uniformly bounded seauence {v,} of

elements of Z su~h that

Ef 1v,(t) - v(t) IP dt - 0, as. as j -

Proof: (a) Given vEV, define vj(t) = if (t v(s)ds, j = 1, 2,..Here we assume v(t) = 0

for t < 0. Then vic Z since v is uniformly bounded and adapted. Moreover, since v is

left continuous, we have for each t, 0 4 t ( T, v,(t)-v(t), as.

To prove the second part of the lemma, we use the following result.

Lemma 2: (Ikeda-Watanabe [6], p. 21): L~t 4' 1& a Iin= spc gf real measurable

urocesses which are uniformly bounded (a~ function~ from [0,T] x nI into A1). Assume 4'

satisfies the flloinig conditions.

(i) 4' contains all 14n112rn1 l oun e ft continuous (Ft)-adapted 2rcsss i.e., VC4'.

and

00ii f (on) i g~ mnotoneh increasing seguence Qf prcse in_ ' suc that 0 = sup OnL

uniformly bondd jhC 0 1 4'.

Thi co ntaiins &j uiIf2jf bone 2rdcal prcsss i.e., UC4'.
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Proof of part (b) of Lemma 1: Let 0 be the set of veU such that the conclusion of

part (b) holds. Clearly 0 is a linear space. To prove that 0 satisfies the condition (i) of

Lemma 2, let vEV. Then the sequence {v,} defined as in the proof of part (a) of Lemma

1 satisfies

lira E Iv(t) . v(t)l Pdt = 0

by the Bounded Convergence Theorem. Then VcO. To prove condition (ii) let {o} be a

sequence approximating On in the sense of (b). Also, by the Bounded Convergence

Theorem

T p
lim Ef I0n(t) - 0(t)I dt = 0.
j-*o 0

Then approximate 0 = sup On as follows. Given je{1, 2,...} choose n such that

rT1Ef 'n(t) -(t)I P dt < Next, choose X such that E i0n(t) - P'(t)lPdt <22j 0 n2j
for all m ; ). Finally, let =/j . . Then { j} is a uniformly bounded sequence of

elements of Z satisfying

lim Ef T 1'j(t) - O(t) IP dt = 0, as.
j.-40 0

Thus O60 and the proof of Lemma 1 is concluded.

§4. Existence and uniqueness when u isin V.

Definition 2: Assume ueV is given. Then, an W~-valued process X(t), 0_t<T, is said to

be a solution of (1) with initial condition X(0) = X if there exists a map

r: [0,1" x V x 1 -, g:n such that the following conditions are satisfied (the dependence of

r on wc( is not displayed below).

(D.i) For all vEV, r(tv) is (Tt)-adapted.

(D.ii) For all vEV, r(ov) = X

(D.iii) If vEZ, then the process r(tv) solves (2) in Stratonovich sense.

(D.iv) If vEV and {v,} is a uniformly bounded sequence of elements in V such that for
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every t, O<t<T, v i (t) - v(t), a.s., then for each t, 0 ( t 4 T,

E ir(tv) - r(t,v) 12-O, j~

(D.v) r (t,u) = X(t), 0<t<T.

Remark 1: If v and {v1} are as in (D.iv) then the Bounded Convergence Theorem implies

that for every 1(p<, t E Iv,(s) - v(s)lr ds-0, as j--.

Theorem 1: Assume that conditions (HI) through (H4) hoiq. Then, 2ive ucV, the

system (1) with initial condition X(0) =X has a solution X(t), O<tST, in the sense of

Definition 2 such that

(a) for each t, X(t) is unique in quadratic-mean norm. and

(b) El X(t) I ~is bounded, uniformly in t.

Proof:

(a) Uniqueness: Suppose X(t) and X(t) are two competing solutions of (1) starting at X

Then, there exist two maps r, r: [0,T] x V x (I - An satisfy'ing r(t,u) = X(tQ, r(t,u)=

-~X(t) and properties (D.i) through (D.iv). Consider a uniformly bounded sequence {uj} of

elements of Z such that for each t, 0ctcT u1(t)-u(t), as. The existence of {u1} follows

from part (a) of Lemma 1. Then, for each j, the processes r(t~uj) and r(t~uj) are

solutions of the same equation (2) with identical initial condition. But uniqueness holds

in this case since ujcZ. Then r(t,u.) = r(t,uj). Then (D.iv) imply that for each t, 0<t:ST,

E IX(t) -X(t) 12 = 0. Thus (a) is proved.

0Existence: As a first step we reduce the problem of solving (1) to that of solving a

simpler system. For this, we introduce a transformation which was also used in Sussmann

[13] for a purpose siiliar to ours. Let F: A~ x Pn4 be the flow of f, that is, the

solution of

(sF = f(F(sx)) . (sx)cP x ,n F(0,x) =x

W111 U- a(sNx)

*Oda
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8F
Then FeC 3 (Ip x 1pn) and if A(sx) denotes the n x n matrix - (sx), then

(3) A(sx) - I + f -(F(, x)) A(Tx) dT ,

where I is the n x n identity matrix. Let B(sx) denote the inverse of A(sx). Then

(4) B(sx) = I - f B(T, x) --- (F(T,x)) dT

af
Since -T is bounded, then it follows from Gronwall's inequality that both A(sx) andax
B(sx) are bounded as long as s remains bounded. Also, it is easy to deduce from the

above formulae and (H2) that

(5) IF(sx)I + I F(s.x) I _ O(s) (1 + IxI)

where B is independent of x and it is bounded as long as s remains bounded.

Introduce the following vector fields on p n+l. Let

f (sx) = (1,0,. ,0)

g (sx) (0, B(sx) g(F(s,x))) , and

Uv(sx) (0, B(sx) av (F(sx))) , v = 1,---, N.

Let F (sx) be the Jacobian matrix of F at (sx). Then

(6) F.(sx) f(sx)-- F.sX) = f(F(sx))

(7) F.(sx) g (sx)= g(F(sx))

(8) F.(sx) Vv(s.x) = ov(F(sx))

The following lemma is needed to solve a stochastic differential equation in Stratonovich

sense involving - and 'a , v = 1,.. -N, as coefficients.
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Lemma 3: Let 7a denote either one of the vector fields V , v - ... N. We have

- 8 82 ,g ad )

ocC2(IP x W~) and g (CI(P x PIn). Moreover -o, "g and - ij = .,n,

are bounded as functions of (sx) as WO M s remains in p bounded t. Qn the other

hand,

n
I- (s,x) l+ XI (s,x) I +1 (sx)l <(s) (1 + Ix),

i-- 1 i

where 13(s) is bounded as long as s remains in a bounded set.

The proof of these properties follows easily from repeated use of (3) (5) , (H2)

(H4) and Gronwall's inequality.

Consider now the system of n + 1 equations

N
dy(t) = f (Y (t)) 0 dv (t) + g(Y(t))dt+E oV(Y(t)).dWv(t)

n+--1

where Y (t) is n 1 - valued, and v c Z. Then, this is equivalent to

(9) dY(t) = g(v(t), Y(t))dt + 1" ov (v(t) , Y(t)) d WV(t),
V= I

where Y(t) is IR-valued, and g (resp. o.) stands for the last n components of g (resp.b,),

i.e. , g = B (g F) (resp. ov = B (ov . F)) . The system with Ito differentials equivalent to

(9) is
N.,

(10) dY(t) - h(v(t) , Y(t)) dt + I ov(v(t) , Y(t)) dWV(t)
V. 1

1 N n 8O - i , o
where h= g+- I I - v and o is the i-th component of 0v.

2 " 1 8xm,

The process v(t) enters (10) as a parameter. It is well known that if v(t) is (Ft )- adapted
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and uniformly bounded then Lemma 3 implies that given the initial condition Y(0) = X,

there exists a solution Y(t) of (10) which is stochastically unique (see, for example,

Gihman-Skorohod [4], pp. 50-52). Next, we prove that the p moment of Y(t), where p

is the power in (HI), is bounded uniformly in t. From (10) and the inequality

Ia + bIP < 2 P IlaIP + IbP } , it follows that

E IY(t) 1p - C1 (Tp) {EI XIp + JEI h" (v(s), Y(s)) I P ds

N
+ I El o (v(s) , Y(s)) dW V (s)l }

V= I1 f

1 C2 (T,p) { EI X I + E I h(v(s), Y(s)) I ds
" 0

N t
+ IE OV (v(s) , Y(s)) I ds},

v= 1 *

where the last inequality is a consequence of the estimates for moments of stochastic

integrals (see, for example, Zakai [15], p. 173). Now by Lemma 3, the coefficients h and

,v of (10) are bounded provided v(t) is uniformly bounded. Then, if M is a uniform

bound for v(t), it follows from (HI) that

(11) E IY(t) I" < C3 (Tp,M )< -, uniformly for tE [0,T].

Suppose next that vEV and {v, } is a uniformly bounded sequence of elements in V such

that for every t , 0 _ t < T, vj(t)-,v(t) sa.s Let Y, (t) denote the solution of

N
dYj(t) = h(v, (t) ,Yj(t)) dt + I ov(vj(t) , Yj(t)) dW V (t)

V.1

with initial condition Y, (0) = X. This and (10) imply



-12-

+ EIh(vj(s)Y(s))- h(V(S),y(S))1 2 ds

v10

N 1 t
+ 1: JO E I _OV (Vj (S) , y(S)) - V (V (S) Y(s)) 2 ds

V=

El's Ct) -Y(t) 12 CS (T){ JElIy ()-Ys12dJ0 j ()-yS12 d
+ OE [(1 + I Y(s)I 1) 1lvi (S) _V(S) 121ds}

Holder's inequality together with (11) and Remark 1 imply that the last integral converges

uniformly to zero as j -.. Then Gronwall's inequality implies that

(12) E I Y.(t) -Y(t) 12  0, asj--, uniformly fort[OTJ.

Define r: [0,T] x V x il - 11 as follows. Let

(13) r (t~v) = F(v (t ), Y (t )),

where Y(t) is the solution of (10) with initial condition Y(0) - X (wn is not shown) It

is clear that r satisfies (D.i) and (D.ii). To check (D.iii) let vi Z. By the chain rule for

Stratonovich integrals (cf. Ikeda-Watanabe [5], p. 101) and (6) - (8)
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d r(tv) = Fs (v (t), Y (t))dv (t) +Fx(v(t), Y (t)) odY (t)

N
= f (F(v (t) . Y(t))) dv (t) + g(F(v (t) , Y(t))) dt + I o,(F (v(t) ,Y (t))) .dWV (t)

V- I

N
= f (r(tyv)) dv(t) +g(r(tv)) dt + I ov (r(tv)) * dW.v(t)

v= I

Thus to conclude the proof of eistence it remains to prove (D.iv). For this, let (v, and v

be as required in (D.iv). The Mean Value Theorem together with (13) imply

22
(14) E I r (t j.) - r (tv) E I E F(v, (t) , Y1 (t)) - F(v(t) ,Y(t)) 12

~C6 E{ IYj (t) - Y(t) 12 + (1 I Y(t) 12 l v, (t) -v(t) 12

Holder's inequality, together with (11) and (12) imply that for each t, 0 < t < T

(15) E I r(tv) -r (tv)I 0 , as j--.

It remains to prove (b) to conclude the proof of Theorem 1. We have

(16) E r (t,v) I = E I F(v(t) , Y(t)) I P C 7 (P) (1 + E I Y(t) I )

Then (11) implies (b).

Corollary: (a) For the solution X(t) Qf (1) 12 hma i disconinity pt T ti j c n sary (blt fl2

sufficient) that u(t) have a dicniut aj T.

(b) If u(t) is conuu 2nbIfl thesj IC 2imila 2P1 fta xiff j 12 LS X(t).

Proof: The solution Y(t) of (10) with Y(0) - X is a process with continuous paths.

Then the jumps of the process X(t) - r(tu) - F(u (t),Y(t)) , with r and F as in Theorem

1, can only be produced by jumps of u(t). Hence our statements follow.

5 5. £Fistnc nn uniguens hon u "Sjf U.

Dfinition~ 3: Assume u in U is given. Then, an An"-valued process X(t), 0 4 t ( T, is

said to be a solutio of (1) with initial condition X(0) - X if there exists a map

A: [0,T] x u x ni -A such that the following conditions are satisfied.
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(EA) For all veU, A(tv) is predictable.

(Elii) For all vEU, A(O,v) = X.

(E.iii) If vet~, then the process A(tv) solves (2) in Stratonovich sense.

(E.iv) Let q = 2 + 4/(p -2); i.e., such that 2/p + 2/q =1. If ViEU and {v1} is a uniformly

bounded sequence of elements in U such that jlim E 3 lv1(t) _ v(t)lq dt = 0, then

tim EJT IA(t,%.) - A(t,v)I 2dt =0.

(E.v) A(t~u) = X(t), 0 ( t (T.

Theorem 2: Assume that conditions (HI) through (H4) hold. Then, &ive ueU, the

system (1) wijth initial condition X(0) = X has a solution X(t), 0 t ( T, in the sense of

Definition 3 such that

(a) X(t) is unique in the norm of L2([0,T] x fl), and

(b) E1f I X(t) IP dt <

Proof: (a) Uniqueness: The proof is similar to that of uniqueness in Theorem 1. In fact,

suppose A, W:[0,T] x U x are two competing functions satisfying properties (EAi)

through (E~iv). By part (b) of Lemma 1 let {uj} be a uniformly bounded sequence of

elements in t such that EJT I Uj(t) _ u(t) I qldt - 0, as j - , with q as in (E.iv). Then

A(t~u,) and X(t,uj) are identical because uniqueness holds for (2). Then (E.iv) implies that

E1f I A(tu)(u) ) 2dt - 0. Thus (a) is proved.

Existence: The proof of this part is the same as that of existence for Theorem 1 with a

few minor changes. In the proof of (12) we use the hypothesis Eff I V(t) V(t) Iq dt- ,

j- ,of (E.iv) instead of using Remark 1. The function A is defined on [0,T] x U x 1

as A(tv) -F(v(t)),Y(t)). Then the proof of (E-iv) follows from

EJToI A(t,v1) -A(tv) I dt = f EI F(vj(t),Yf~t)) -F(v(t),Y(t)) 12 dt

CC Ef {Yj (t) _ Y(t)1 2+ (1 + I Y(t) 12) Iv(t) -V(t)I12)dt,
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and Holder's inequality.

Finally, (b) follows from

Ef 01A(t,v) I dt = EJ IF(v(t),Y(t)) I' dt ( C EfT1 1 + IY(t)IP) dt.

§6. The chain rule.

We consider only the case of ue V in this section. Clearly, the chain rule can also

be stated and proved with trivial modifications for the case of ue'U.

In this section we assume the hypotheses and notation of Theorem 1. Coordinates of

vector valued functions are indicated by an upper index. For example, f denotes the i-th

coordinate of f. We introduce the following extension of Definition 2.

Definition 4: Let kE C3 (pf ). An A" - valued process X(t), Oct <T, is said to satisfy

.n 
8

(17) dOb(X(t)) I (X(t)) {f' (X(t)) du(t) + g'(X(t)) dt
Ii I a i

N
+ I a v (X(t)) . dWv (t)}

V= 1

(18) 4'(X(O)) O )

if there exists a map r: [0,T] x V x fl - A such that conditions (DM), (D.ii), (D.iv), (D.v) and

(D.vi) are satisfied.

Condition (D.vi) is as follows.

(D.vi) If VE Z, then r (tv), 0OIt <T, satisfies

N8~ i dv
(19) dom(rt~v)) ~ ~.(r(t,v)) {f' (r (tv)) -(t) dt + g, (r (tv)) dt

N
+ ov,(r(t~v)) .*~ t)

(20) (roggx)) -=)



in Stratonovich sense.

Remark 2: If oji(x) = x, this is Definition 2.
3'n

Theorem 3: Let iEC (A) an4 et X(t), O~t-cT, stisfy (1) with X(0) = X. mp flM sense pf

Definition 2. Then X(t), 0<tfT, satisfies (17) - (18).

Proof: For vet~ the usual chain rule holds for X(t) (cf. Ikeda-Watanabe [6]. p. 101). That

is, (D.vi) is satisfied. Then X(t) satisfies (17) - (18) in the sense of Definition 4.
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